Fault Diagnosis of Rolling Bearing Based on HPSO Algorithm Optimized CNN-LSTM Neural Network

Author:

Tian He12,Fan Huaicong12,Feng Mingwen12,Cao Ranran12,Li Dong34

Affiliation:

1. National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, China

2. Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China

3. School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300384, China

4. Tianjin Key Laboratory for Control Theory & Applications in Complicated Industry Systems, Tianjin 300000, China

Abstract

The quality of rolling bearings is vital for the working state and rotation accuracy of the shaft. Timely and accurately acquiring bearing status and early fault diagnosis can effectively prevent losses, making it highly practical. To improve the accuracy of bearing fault diagnosis, this paper proposes a CNN-LSTM bearing fault diagnosis model optimized by hybrid particle swarm optimization (HPSO). The HPSO algorithm has a strong global optimization ability and can effectively solve nonlinear and multivariate optimization problems. It is used to optimize and match the parameters of the CNN-LSTM model and dynamically find the optimal value of the parameters. This model overcomes the problem that the parameters of the CNN-LSTM model depend on empirical settings and cannot be adjusted dynamically. This model is used for bearing fault diagnosis, and the accuracy rate of fault diagnosis classification reaches 99.2%. Compared with the traditional CNN, LSTM, and CNN-LSTM models, the accuracy rates are increased by 6.6%, 9.2%, and 5%, respectively. At the same time, comparing the models with different optimization parameters shows that the model proposed in this paper has the highest accuracy. The experimental results verified the superiority of the HPSO algorithm to optimize model parameters and the feasibility and accuracy of the HPSO-CNN-LSTM model for bearing fault diagnosis.

Funder

State Grid Tianjin Electric Power Company Science and Technology Project

Tianjin Postgraduate Scientific Research Innovation Project

Tianjin University of Technology 2022 School-Level Postgraduate Scientific Research Innovation Practice Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3