Fabrication of a TiC-Ti Matrix Composite Coating Using Ultrasonic Vibration-Assisted Laser Directed Energy Deposition: The Effects of Ultrasonic Vibration and TiC Content

Author:

Li Yunze,Zhang Dongzhe,Wang Hui,Cong WeilongORCID

Abstract

Titanium and its alloys exhibit superior properties of high corrosion resistance, an excellent strength to weight ratio and outstanding stiffness among other things. However, their relatively low hardness and wear resistance limit their service life in high-performance applications of structure parts, gears and bearings, for example. The fabrication of a ceramic reinforced titanium matrix composite (TMC) coating could be one of the solutions to enhance the microhardness and wear resistance. Titanium carbide (TiC) is a preferable candidate due to the advantages of self-lubrication, low cost and a similar density and thermal expansion coefficient with titanium. The fabrication of TiC-TMC coatings onto titanium using a laser directed energy deposition (LDED) process has been conducted. The problems of TiC aggregation, low bonding quality and the generation of fabrication defects still exist. Considering ultrasonic vibration could generate acoustic steaming and transient cavitation actions in melted materials, which could homogenize the distribution of reinforcement materials and promote the dissolution of TiC into liquid titanium. In this study, for the first time, we investigate the ultrasonic vibration-assisted LDED of TiC-TMC coatings. The effects of ultrasonic vibration and reinforcement content on the phase compositions, reinforcement aggregation, bonding quality, fabrication defects and mechanical properties (including microhardness and wear resistance) of LDED deposited TiC-TMC coatings have been investigated. With the assistance of ultrasonic vibration, the aggregation of TiC was reduced, the porosity was decreased, the defects in the bonding interface were reduced and the mechanical properties including microhardness and wear resistance were increased. However, the excessive TiC content could significantly increase the TiC aggregation and manufacturing defects, resulting in the reduction of the mechanical properties.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3