Mechanical Behavior Evaluation of Tempcore and Hybrid Reinforcing Steel Bars via a Proposed Fatigue Damage Index in Long Terms

Author:

Basdeki Maria,Apostolopoulos Charis

Abstract

As it is widely known, corrosion constitutes a major deterioration factor for reinforced concrete structures which are located in coastal areas. This phenomenon, combined with repeated loads and, especially, intense seismic events, negatively affect their useful service life. It is well known that the microstructure of steel reinforcing bars has a significant impact either on their corrosion resistance or on their fatigue life. In the present manuscript, an effort has been made to study the effect of corrosive factors on fatigue response for two types of steel reinforcement: Tempcore steel B reinforcing bars and a new-generation, dual-phase (DP) steel F reinforcement. The findings of this experimental study showed that DP steel reinforcement’s rate of degradation due to corrosion seemed apparently lighter than Tempcore B with respect to its capacity to bear repeated loads to a satisfactory degree after corrosion. For this purpose, based on a quality material index that characterizes the mechanical performance of materials, an extended damage material indicator for fatigue conditions is similarly proposed for evaluating and classifying these two types of rebars in terms of material quality and durability. The outcomes of this investigation demonstrated the feasibility of fatigue damage indicators in the production cycle as well as at different exposure times, once corrosion phenomena had left their mark in steel reinforcement.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference58 articles.

1. The cost of corrosion in China

2. International Measures of Prevention, Application, and Economics of Corrosion Technologies Study;Koch,2016

3. Pour un monde durable: Journée mondiale de la corrosion, 24 April 2020;Marcus;Matér. Tech.,2020

4. EN 1998-1:2005, Eurocode 8: Design of Structures for Earthquake Resistance—Part 1: General Rules, Seismic Actions and Rules for Buildings,2005

5. N-1992-1-1, Eurocode 2–Design of Concrete Structures. Part 1–1: General Rules and Rules for Buildings,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3