Author:
Zhao Mengjing,Wang Yong,Yang Shufeng,Ye Maolin,Li Jingshe,Liu Yuhang
Abstract
Tundish plasma heating is an effective method for achieving steady casting with low superheat and constant temperature. In order to study the flow field, temperature field in tundish heated by plasma, a three-dimensional transient mathematical model was established in the present work. A four-strand T-type tundish in a steelmaking plant was used to explore the changes in the flow field and temperature field of molten steel in the tundish under different plasma heating powers. The results showed that plasma heating affected the flow state of molten steel. It could eliminate the short-circuit flow at outlet. When the plasma heating was 500 kW, the molten steel had an obvious upward flow. The turbulence intensity was improved and distributed evenly with an increase in plasma heating power. In the prototype tundish, the temperature of the outlet was dropped by nearly 2–3 K within 300 s. With the increase of plasma heating power, the low temperature area in the tundish gradually was decreased. When the heating power was 1000 kW, the temperature difference of two outlets was 0.5 K and the overall temperature distribution was more uniform. The research results have a certain guiding significance for the selection of the actual plasma heating power on site.
Funder
National Nature Science Foundation of China
Subject
General Materials Science,Metals and Alloys
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献