Affiliation:
1. Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, 7500 AE Enschede, The Netherlands
2. Faculty of Engineering, Lebanese University, Beirut 1533, Lebanon
3. Faculty of Arts and Science, University of Sciences and Arts in Lebanon, Beirut 1002, Lebanon
Abstract
Highly constrained devices that are interconnected and interact to complete a task are being used in a diverse range of new fields. The Internet of Things (IoT), cyber-physical systems, distributed control systems, vehicular systems, wireless sensor networks, tele-medicine, and the smart grid are a few examples of these fields. In any of these contexts, security and privacy might be essential aspects. Research on secure communication in Internet of Things (IoT) networks is a highly contested topic. One method for ensuring secure data transmission is cryptography. Because IoT devices have limited resources, such as power, memory, and batteries, IoT networks have boosted the term “lightweight cryptography”. Algorithms for lightweight cryptography are designed to efficiently protect data while using minimal resources. In this research, we evaluated and benchmarked lightweight symmetric ciphers for resource-constrained devices. The evaluation is performed using two widely used platform: Arduino and Raspberry Pi. In the first part, we implemented 39 block ciphers on an ATMEGA328p microcontroller and analyzed them in the terms of speed, cost, and energy efficiency during encryption and decryption for different block and key sizes. In the second part, the 2nd-round NIST candidates (80 stream and block cipher algorithms) were added to the first-part ciphers in a comprehensive analysis for equivalent block and key sizes in the terms of latency and energy efficiency.
Funder
SCS group at the University of Twente
Subject
Computer Networks and Communications
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献