Lane Position Detection Based on Long Short-Term Memory (LSTM)

Author:

Yang Wei,Zhang Xiang,Lei Qian,Shen Dengye,Xiao Ping,Huang Yu

Abstract

Accurate detection of lane lines is of great significance for improving vehicle driving safety. In our previous research, by improving the horizontal and vertical density of the detection grid in the YOLO v3 (You Only Look Once, the 3th version) model, the obtained lane line (LL) algorithm, YOLO v3 (S × 2S), has high accuracy. However, like the traditional LL detection algorithms, they do not use spatial information and have low detection accuracy under occlusion, deformation, worn, poor lighting, and other non-ideal environmental conditions. After studying the spatial information between LLs and learning the distribution law of LLs, an LL prediction model based on long short-term memory (LSTM) and recursive neural network (RcNN) was established; the method can predict the future LL position by using historical LL position information. Moreover, by combining the LL information predicted with YOLO v3 (S × 2S) detection results using Dempster Shafer (D-S) evidence theory, the LL detection accuracy can be improved effectively, and the uncertainty of this system be reduced correspondingly. The results show that the accuracy of LL detection can be significantly improved in rainy, snowy weather, and obstacle scenes.

Funder

Chongqing Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3