Impact of Historical Software Metric Changes in Predicting Future Maintainability Trends in Open-Source Software Development

Author:

Gradišnik MitjaORCID,Beranič TinaORCID,Karakatič SašoORCID

Abstract

Software maintenance is one of the key stages in the software lifecycle and it includes a variety of activities that consume the significant portion of the costs of a software project. Previous research suggest that future software maintainability can be predicted, based on various source code aspects, but most of the research focuses on the prediction based on the present state of the code and ignores its history. While taking the history into account in software maintainability prediction seems intuitive, the research empirically testing this has not been done, and is the main goal of this paper. This paper empirically evaluates the contribution of historical measurements of the Chidamber & Kemerer (C&K) software metrics to software maintainability prediction models. The main contribution of the paper is the building of the prediction models with classification and regression trees and random forest learners in iterations by adding historical measurement data extracted from previous releases gradually. The maintainability prediction models were built based on software metric measurements obtained from real-world open-source software projects. The analysis of the results show that an additional amount of historical metric measurements contributes to the maintainability prediction. Additionally, the study evaluates the contribution of individual C&K software metrics on the performance of maintainability prediction models.

Funder

Slovenian Research Agency

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference71 articles.

1. Software sustainability: Research and practice from a software architecture viewpoint

2. Cognitive complexity as a quantifier of version to version Java-based source code change: An empirical probe

3. Machine Learning Strategies for Temporal Analysis of Software Clone Evolution using Software Metrics;Pati;Int. J. Appl. Eng. Reaserch,2017

4. Quality assurance in software ecosystems: A systematic literature mapping and research agenda

5. Defectiveness Evolution in Open Source Software Systems;Javed,2016

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3