Application of a Deep Learning Network for Joint Prediction of Associated Fluid Production in Unconventional Hydrocarbon Development

Author:

Vikara Derek,Khanna Vikas

Abstract

Machine learning (ML) approaches have risen in popularity for use in many oil and gas (O&G) applications. Time series-based predictive forecasting of hydrocarbon production using deep learning ML strategies that can generalize temporal or sequence-based information within data is fast gaining traction. The recent emphasis on hydrocarbon production provides opportunities to explore the use of deep learning ML to other facets of O&G development where dynamic, temporal dependencies exist and that also hold implications to production forecasting. This study proposes a combination of supervised and unsupervised ML approaches as part of a framework for the joint prediction of produced water and natural gas volumes associated with oil production from unconventional reservoirs in a time series fashion. The study focuses on the pay zones within the Spraberry and Wolfcamp Formations of the Midland Basin in the U.S. The joint prediction model is based on a deep neural network architecture leveraging long short-term memory (LSTM) layers. Our model has the capability to both reproduce and forecast produced water and natural gas volumes for wells at monthly resolution and has demonstrated 91 percent joint prediction accuracy to held out testing data with little disparity noted in prediction performance between the training and test datasets. Additionally, model predictions replicate water and gas production profiles to wells in the test dataset, even for circumstances that include irregularities in production trends. We apply the model in tandem with an Arps decline model to generate cumulative first and five-year estimates for oil, gas, and water production outlooks at the well and basin-levels. Production outlook totals are influenced by well completion, decline curve, and spatial and reservoir attributes. These types of model-derived outlooks can aid operators in formulating management or remedial solutions for the volumes of fluids expected from unconventional O&G development.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference158 articles.

1. Natural Gas Demand for Electricity Can Only Grow. Forbeshttps://www.forbes.com/sites/judeclemente/2019/01/15/u-s-natural-gas-demand-for-electricity-can-only-grow/#27b0ba844c74

2. Petroleum Rock Mechanics;Aadnøy,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3