Quantifying Short-Term Urban Land Cover Change with Time Series Landsat Data: A Comparison of Four Different Cities

Author:

Zhang Hongsheng,Wang Ting,Zhang Yuhan,Dai Yiru,Jia Jiangjie,Yu Chang,Li Gang,Lin Yinyi,Lin Hui,Cao Yang

Abstract

Short-term characteristics of urban land cover change have been observed and reported from satellite images, although urban landscapes are mainly influenced by anthropogenic factors. These short-term changes in urban areas are caused by rapid urbanization, seasonal climate changes, and phenological ecological changes. Quantifying and understanding these short-term characteristics of changes in various land cover types is important for numerous urban studies, such as urbanization assessments and management. Many previous studies mainly investigated one study area with insufficient datasets. To more reliably and confidently investigate temporal variation patterns, this study employed Fourier series to quantify the seasonal changes in different urban land cover types using all available Landsat images over four different cities, Melbourne, Sao Paulo, Hamburg, and Chicago, within a five-year period (2011–2015). The overall accuracy was greater than 86% and the kappa coefficient was greater than 0.80. The R-squared value was greater than 0.80 and the root mean square error was less than 7.2% for each city. The results indicated that (1) the changing periods for water classes were generally from half a year to one and a half years in different areas; and, (2) urban impervious surfaces changed over periods of approximately 700 days in Melbourne, Sao Paulo, and Hamburg, and a period of approximately 215 days in Chicago, which was actually caused by the unavoidable misclassification from confusions between various land cover types using satellite data. Finally, the uncertainties of these quantification results were analyzed and discussed. These short-term characteristics provided important information for the monitoring and assessment of urban areas using satellite remote sensing technology.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3