Genotoxicity of Polystyrene (PS) Microspheres in Short-Term Exposure to Gametes of the Sand Dollar Scaphechinus mirabilis (Agassiz, 1864) (Echinodermata, Echinoidea)

Author:

Mazur Andrey AlexandrovichORCID,Chelomin Viktor Pavlovich,Zhuravel Elena Vladimirovna,Kukla Sergey Petrovich,Slobodskova Valentina Vladimirovna,Dovzhenko Nadezda VladimirovnaORCID

Abstract

Microplastic pollution appears to be one of the major environmental problems in the world today, and researchers have been paying special attention to the study of the impact of microplastics on biota. In this article, we studied the short-term effects of polystyrene micro-spheres on genome integrity using the gametes of the Scaphechinus mirabilis sand dollar with the comet assay method. This highly sensitive method allowed us to identify the level of genome damage in both gametes before and after short-term exposure to PS microparticles. It was shown that primary polystyrene microspheres at concentrations of 104, 105, and 106 particles/L had a genotoxic effect during short-term exposure to the sperm of the sand dollar S. mirabilis, which was expressed as a significant increase in sperm DNA damage. The highest percentage of DNA damage (more than 20%) was detected in spermatozoa exposed for 1 h in water containing 105 microspheres of plastic per 1 L. Additionally, at all concentrations of microplastic studied in the experiment, the genetic damage index (GDI) values in spermatozoa exceeded the control level. However, regardless of the level of DNA damage, spermatozoa retained the ability to fertilise eggs with up to 97% efficiency. We must acknowledge that the genotoxic property of microplastic against sperm to some extent predicts the development of long-term adverse effects of environmental significance.

Funder

State assignment for research work of V.I. Il’ichev Pacific Oceanological Institute, FEB RAS

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3