Research on Oscillation Suppression Methods in Shunt Active Power Filter System

Author:

Hou RuiORCID,Wang Pengfei,Wu Jian,Xu Dianguo

Abstract

The shunt active power filter (SAPF) system oscillation is a massive threat to the security and stability of the power grid. This study classifies SAPF oscillation into two categories according to the difference in mechanisms. The SAPF oscillation in one category is caused by the resonant characteristics of a switching noise filter and is called external loop amplification. The SAPF oscillation in the other category is induced by the presence of a capacitor in the load current for SAPF and is called self-excited oscillation. Unlike previous studies, this study tried to reveal the internal relationship between the two kinds of SAPF oscillation, present a general shunt virtual-damping-based SAPF oscillation suppression strategy covering the previous resonant damping method, and provide the discrete domain stability criterion of the control system. The sampling frequency was at least six times the resonant frequency. The stability region was enlarged with an increase in the sampling frequency and narrowed with a rise in the resonant frequency. As to the harmful self-excited oscillation problem, this study proposes a composite control strategy combining selective harmonic compensation and grid-side current feedback. Moreover, this study considers the more general resistance–inductance–capacitance load situations and analyzes the stability of the SAPF–Thyristor Switched Capacitor (TSC) hybrid compensation system. Simulations and experiments demonstrated that the proposed compound control method can reduce the primary harmonics of the system by more than 90% and has a better oscillation suppression performance than previous suppression methods. In particular, if we selected the TSC series reactance rate following more than 6%, self-excited oscillation could usually be avoided.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3