Author:
Tian Yuanyuan,Chen Qing,Yan Changhui,Chen Hongde,He Yanqing,He Yufeng
Abstract
Adsorption equations are important to analyze the pore size distribution (PSD) of shale and the adsorption behavior on it. However, the accurate description of nitrogen adsorption on shale by current adsorption equations is difficult to achieve due to the heterogeneous pore structure of shale. In our study, new adsorption isotherms that can properly depict the adsorbed amount of nitrogen were built for shale rocks considering both the processes of nitrogen adsorption and the cylindrical pore shape property of shale. When performing a regression analysis on five sets of experimental adsorption data using the developed adsorption equations, the R-square ranged from 0.739 to 0.987. Based on the pore shape determined by adsorption–desorption curves, the distinct R-square indicated that our equation is not valid for shale samples with ink-bottle pores and pores formed by schistose materials, but that it is suitable for shale samples with cylindrical pores and slit pores. Meanwhile, we precisely analyzed the PSDs of shale rocks based on the developed adsorption equations as capillary condensation volume is involved in the total adsorbed amount. Thus, the PSDs of shale rocks with cylindrical pore and slit pore were analyzed by the new adsorption equation.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献