Author:
Zheng Zhaoyu,Lu Jiyun,Liang Dakai
Abstract
Carbon-fiber aluminum honeycomb sandwich panels are vulnerable to low-velocity impacts, which can cause structural damage and failures that reduce the bearing performance and reliability of the structure. Therefore, a method for locating such impacts through a sensor network is very important for structural health monitoring. Unlike composite laminates, the stress wave generated by an impact is damped rapidly in a sandwich panel, meaning that the signal qualities measured by different sensors vary greatly, thereby making it difficult to locate the impact. This paper presents a method for locating impacts on carbon-fiber aluminum honeycomb sandwich panels utilizing fiber Bragg grating sensors. This method is based on a projective dictionary pair learning algorithm and uses structural sparse representation for impact localization. The measurement area is divided into several sub-areas, and a corresponding dictionary is trained separately for each sub-area. For each dictionary, the sensors are grouped into main sensors within the sub-area and auxiliary sensors outside the sub-area. A balancing weight factor is added to optimize the proportion of the two types of sensor in the recognition model, and the algorithm for determining the balancing weight factor is designed to suppress the negative effects on the positioning of the sensors with poor signal quality. The experimental results show that on a 300 mm × 300 mm × 15 mm sandwich panel, the impact positioning accuracy of this method is 96.7% and the average positioning error is 0.85 mm, which are both sufficient for structural health monitoring.
Funder
National Natural Science Foundation of China
Open Funds for Key Laboratory of Civil Aircraft Health Monitoring and Intelligent Maintenance of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献