Abstract
The risk of fire in the chemical industry’s production process is fatal. Gel foam has been widely employed in petroleum storage tanks, oil pools, and other petrochemical equipment for fire extinguishing and thermal protection. Recently, nanoparticles have been doped into gel foam to enhance thermal stability and insulation. However, heat transfer behaviors of the gel foam layer containing nanoparticles are still missing. In this study, a numerical heat transfer model of a gel foam layer containing silica nanoparticles under a radiative heat flux was established. Through simulation, the changes in foam thickness and temperature distribution were analyzed. The effects of the maximum heating temperature, initial gas content, nanoparticle size, and concentration on the thermal insulation behavior of the gel foam layer were systematically studied. The results showed that the thermal stability and insulation performance of the three-phase gel foam layer decreased with the increase in the initial gas content and particle size. Increasing the nanoparticle concentration could enhance the foam’s thermal stability and insulation performance. The results provide guidance for a designing gel foam with high thermal protection performance.
Funder
the Natural Science Foundation of Shandong Province, China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献