An Improved Method for Broiler Weight Estimation Integrating Multi-Feature with Gradient Boosting Decision Tree

Author:

Li Ximing12ORCID,Wu Jingyi13,Zhao Zeyong13,Zhuang Yitao1,Sun Shikai4,Xie Huanlong4,Gao Yuefang1ORCID,Xiao Deqin12

Affiliation:

1. College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, China

2. Key Laboratory of Smart Agricultural Technology in Tropical South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China

3. School of Computer & Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China

4. Wens Foodstuff Group Co., Ltd., Yunfu 527400, China

Abstract

Broiler weighing is essential in the broiler farming industry. Camera-based systems can economically weigh various broiler types without expensive platforms. However, existing computer vision methods for weight estimation are less mature, as they focus on young broilers. In effect, the estimation error increases with the age of the broiler. To tackle this, this paper presents a novel framework. First, it employs Mask R-CNN for instance segmentation of depth images captured by 3D cameras. Next, once the images of either a single broiler or multiple broilers are segmented, the extended artificial features and the learned features extracted by Customized Resnet50 (C-Resnet50) are fused by a feature fusion module. Finally, the fused features are adopted to estimate the body weight of each broiler employing gradient boosting decision tree (GBDT). By integrating diverse features with GBTD, the proposed framework can effectively obtain the broiler instance among many depth images of multiple broilers in the visual field despite the complex background. Experimental results show that this framework significantly boosts accuracy and robustness. With an MAE of 0.093 kg and an R2 of 0.707 in a test set of 240 63-day-old bantam chicken images, it outperforms other methods.

Funder

China Agriculture Research System of MOF and MARA

Jiangsu Province Key R&D Program

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on Decision Tree-Based Recognition of AI-Generated Texts;2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2024-04-26

2. Automatic Weighing and Analysis System for Broiler Chickens Based on Mean-Shift Clustering Analysis;2024 5th International Conference on Computer Engineering and Application (ICCEA);2024-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3