Storage Capacity in Dependency of Supercooling and Cycle Stability of Different PCM Emulsions

Author:

Gschwander Stefan,Niedermaier Sophia,Gamisch Sebastian,Kick MoritzORCID,Klünder Franziska,Haussmann Thomas

Abstract

Phase-change materials (PCM) play off their advantages over conventional heat storage media when used within narrow temperature ranges. Many cooling and temperature buffering applications, such as cold storage and battery cooling, are operated within small temperature differences, and therefore, they are well-suited for the application of these promising materials. In this study, the storage capacities of different phase-change material emulsions are analysed under consideration of the phase transition behaviour and supercooling effect, which are caused by the submicron size scale of the PCM particles in the emulsion. For comparison reasons, the same formulation for the emulsions was used to emulsify 35 wt.% of different paraffins with different purities and melting temperatures between 16 and 40 °C. Enthalpy curves based on differential scanning calorimeter (DSC) measurements are used to calculate the storage capacities within the characteristic and defined temperatures. The enthalpy differences for the emulsions, including the first phase transition, are in a range between 69 and 96 kJ/kg within temperature differences between 6.5 and 10 K. This led to an increase of the storage capacity by a factor of 2–2.7 in comparison to water operated within the same temperature intervals. The study also shows that purer paraffins, which have a much higher enthalpy than blends, reveal, in some cases, a lower increase of the storage capacity in the comparison due to unfavourable crystallisation behaviour when emulsified. In a second analysis, the stability of emulsions was investigated by applying 100 thermal cycles with defined mechanical stress at the same time. An analysis of the viscosity, particle size and melting crystallisation behaviour was done by showing the changes in each property due to the cycling.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3