A Five-Step Approach to Planning Data-Driven Digital Twins for Discrete Manufacturing Systems

Author:

Resman Matevz,Protner Jernej,Simic MarkoORCID,Herakovic Niko

Abstract

A digital twin of a manufacturing system is a digital copy of the physical manufacturing system that consists of various digital models at multiple scales and levels. Digital twins that communicate with their physical counterparts throughout their lifecycle are the basis for data-driven factories. The problem with developing digital models that form the digital twin is that they operate with large amounts of heterogeneous data. Since the models represent simplifications of the physical world, managing the heterogeneous data and linking the data with the digital twin represent a challenge. The paper proposes a five-step approach to planning data-driven digital twins of manufacturing systems and their processes. The approach guides the user from breaking down the system and the underlying building blocks of the processes into four groups. The development of a digital model includes predefined necessary parameters that allow a digital model connecting with a real manufacturing system. The connection enables the control of the real manufacturing system and allows the creation of the digital twin. Presentation and visualization of a system functioning based on the digital twin for different participants is presented in the last step. The suitability of the approach for the industrial environment is illustrated using the case study of planning the digital twin for material logistics of the manufacturing system.

Funder

Ministrstvo za Izobraževanje, Znanost in Šport

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3