Abstract
The worldwide increase in the number and use of agrochemicals impacts nearby soil and freshwater ecosystems. Beyond the excess in applications and dosages, the inadequate management of remnants and the rinsing water of containers and application equipment worsen this problem, creating point sources of pollution. Advanced oxidation processes (AOPs) such as photocatalytic and photo-oxidation processes have been successfully applied in degrading organic pollutants. We developed a simple prototype to be used at farms for quickly degrading pesticides in water solutions by exploiting a UV–H2O2-mediated AOP. As representative compounds, we selected the insecticide imidacloprid, the herbicide terbuthylazine, and the fungicide azoxystrobin, all in their commercial formulation. The device efficiency was investigated through the disappearance of the parent molecule and the degree of mineralization. The toxicity of the pesticide solutions, before and during the treatment, was assessed by Vibrio fischeri and Pseudokirchneriella subcapitata inhibition assays. The results obtained have demonstrated a cost-effective, viable alternative for detoxifying the pesticide solutions before their disposal into the environment, even though the compounds, or their photoproducts, showed different sensitivities to physicochemical degradation. The bioassays revealed changes in the inhibitory effects on the organisms in agreement with the analytical data.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献