Multivariate Statistical Analysis for Training Process Optimization in Neural Networks-Based Forecasting Models

Author:

Jimenez JamerORCID,Navarro LoraineORCID,Quintero M. Christian G.ORCID,Pardo MauricioORCID

Abstract

Data forecasting is very important for electrical analysis development, transport dimensionality, marketing strategies, etc. Hence, low error levels are required. However, in some cases data have dissimilar behaviors that can vary depending on such exogenous variables as the type of day, weather conditions, and geographical area, among others. Commonly, computational intelligence techniques (e.g., artificial neural networks) are used due to their generalization capabilities. In spite of the above, they do not have a unique way to reach optimal performance. For this reason, it is necessary to analyze the data’s behavior and their statistical features in order to identify those significant factors in the training process to guarantee a better performance. In this paper is proposed an experimental method for identifying those significant factors in the forecasting model for time series data and measure their effects on the Akaike information criterion (AIC) and the Mean Absolute Percentage Error (MAPE). Additionally, we seek to establish optimal parameters for the proper selection of the artificial neural network model.

Funder

Colombian Ministry of Science and Technology, MINCIENCIAS. Educational founding for national doctorates

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3