Automatic Wireless Signal Classification: A Neural-Induced Support Vector Machine-Based Approach

Author:

Wahla Arfan HaiderORCID,Chen LanORCID,Wang Yali,Chen Rong

Abstract

Automatic Classification of Wireless Signals (ACWS), which is an intermediate step between signal detection and demodulation, is investigated in this paper. ACWS plays a crucial role in several military and non-military applications, by identifying interference sources and adversary attacks, to achieve efficient radio spectrum management. The performance of traditional feature-based (FB) classification approaches is limited due to their specific input feature set, which in turn results in poor generalization under unknown conditions. Therefore, in this paper, a novel feature-based classifier Neural-Induced Support Vector Machine (NSVM) is proposed, in which the features are learned automatically from raw input signals using Convolutional Neural Networks (CNN). The output of NSVM is given by a Gaussian Support Vector Machine (SVM), which takes the features learned by CNN as its input. The proposed scheme NSVM is trained as a single architecture, and in this way, it learns to minimize a margin-based loss instead of cross-entropy loss. The proposed scheme NSVM outperforms the traditional softmax-based CNN modulation classifier by managing faster convergence of accuracy and loss curves during training. Furthermore, the robustness of the NSVM classifier is verified by extensive simulation experiments under the presence of several non-ideal real-world channel impairments over a range of signal-to-noise ratio (SNR) values. The performance of NSVM is remarkable in classifying wireless signals, such as at low signal-to-noise ratio (SNR), the overall averaged classification accuracy is > 97% at SNR = −2 dB and at higher SNR it achieves overall classification accuracy at > 99%, when SNR = 10 dB. In addition to that, the analytical comparison with other studies shows the performance of NSVM is superior over a range of settings.

Funder

Beijing Science and Technology Project

National Science and Technology

Publisher

MDPI AG

Subject

Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Support Vector Machine - Based Classification of Wireless Transceivers;2021 31st International Conference Radioelektronika (RADIOELEKTRONIKA);2021-04-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3