A New Mathematical Framework for Describing Thin-Reaction-Zone Regime of Turbulent Reacting Flows at Low Damköhler Number

Author:

Sabelnikov Vladimir A.ORCID,Lipatnikov Andrei N.ORCID

Abstract

Recently, Sabelnikov et al. (2019) developed a phenomenological theory of propagation of an infinitely thin reaction sheet, which is adjacent to a mixing layer, in a constant-density turbulent flow in the case of a low Damköhler number. In the cited paper, the theory is also supported by Direct Numerical Simulation data and relevance of such a physical scenario to highly turbulent premixed combustion is argued. The present work aims at complementing the theory with a new mathematical framework that allows for appearance of thick mixing zones adjacent to an infinitely thin reaction sheet. For this purpose, the instantaneous reaction-progress-variable c ( x , t ) is considered to consist of two qualitatively different zones, that is, (i) mixture of products and reactants, c ( x , t ) < 1 , where molecular transport plays an important role, and (ii) equilibrium products, c ( x , t ) = 1 . The two zones are separated by an infinitely thin reaction sheet, where c ( x , t ) = 1 and | ∇ c | is fixed in order for the molecular flux into the sheet to yield a constant local consumption velocity equal to the speed of the unperturbed laminar reaction wave. Exact local instantaneous field equations valid in the entire spaceare derived for the conditioned (to the former, mixing, zone) reaction progress variable, its second moment, and instantaneous characteristic functions. Averaging of these equations yields exact, unclosed transport equations for the conditioned reaction-progress-variable moments and Probability Density Function (PDF), as well as a boundary condition for the PDF at the reaction sheet. The closure problem for the derived equations is beyond the scope of the paper.

Funder

Ministry of Education and Science of the Russian Federation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Reference52 articles.

1. Turbulent Combustion;Peters,2000

2. Theoretical and Numerical Combustion;Poinsot,2005

3. Fundamentals of Premixed Turbulent Combustion;Lipatnikov,2012

4. Turbulent flame speed and thickness: phenomenology, evaluation, and application in multi-dimensional simulations

5. Turbulent combustion modeling

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3