Author:
Feng Juan,Zeng Lihua,He Long
Abstract
The ability to accurately recognize fruit on trees is a critical step in robotic harvesting. Many researchers have investigated a variety of image analysis methods based on different imaging technologies for fruit recognition. However, challenges still occur in the implementation of this goal due to various factors, especially variable light and proximal color background. In this study, images with fruit were acquired with a Forward Looking Infrared (FLIR) camera based on the Multi-Spectral Dynamic Imaging (MSX) technology. In view of its imaging mechanism, the optimal timing and shooting angle for image acquisition were pre-analyzed to obtain the maximum contrast between fruit and background. An effective algorithm was developed for locking potential fruit regions, which was based on the pseudo-color and texture information from MSX images. The algorithm was applied to 506 training and 340 evaluating images, including a variety of fruit and complex backgrounds. Recognition precision and sensitivity of these complete fruit regions were both above 92%, and those of incomplete fruit regions were not lower than 72%. The average processing time for each image was less than 1 s. The results indicated that the developed algorithm based on MSX imaging was effective for fruit recognition and could be suggested as a potential method for the automation of orchard production.
Funder
National Institute of Food and Agriculture
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference26 articles.
1. 2009 Cost Estimates of Establishing and Producing Gala Apples in Washingtonhttp://cru.cahe.wsu.edu/EPublications/FS005E/FS005E.pdf
2. A Multispectral Imaging Analysis for Enhancing Citrus Fruit Detection
3. DeepFruits: A Fruit Detection System Using Deep Neural Networks
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献