Soil Bacterial Community Structure and Physicochemical Influencing Factors of Artificial Haloxylon ammodendron Forest in the Sand Blocking and Fixing Belt of Minqin, China

Author:

Wang Anlin1,Ma Rui1,Ma Yanjun1,Niu Danni1,Liu Teng1,Tian Yongsheng1,Dong Zhenghu1,Chai Qiaodi1

Affiliation:

1. College of Forestry, Gansu Agricultural University, Lanzhou 730070, China

Abstract

Microbial activity plays a crucial role in upholding the functional stability of vegetation–soil ecosystems. Nevertheless, there exists a paucity of studies concerning the impact of sand-fixing vegetation (Haloxylon ammodendron) on the structure and functional attributes of soil microbial communities. We employed Illumina high-throughput sequencing and PICRUSt2 functional prediction technology to investigate the characteristics of soil bacterial community structure, diversity, and metabolic functions in an artificial H. ammodendron forest, and RDA analysis and the Mantel test were used to reveal the main environmental factors affecting the structure and ecological functions of soil bacterial communities. The findings revealed a significant increase in the principal nutrient contents (organic matter, total nitrogen, total phosphorus) in the H. ammodendron forest soil compared to the mobile dune soil, while a reduction of 17.17% in the surface soil water content was observed. The H. ammodendron forest exhibited a significant enhancement in the diversity and richness index of soil bacteria. Specifically, Actinobacteria (24.94% ± 11.85%), Proteobacteria (29.99% ± 11.56%), and Chloroflexi (11.14% ± 4.55%) emerged as the dominant bacterial phyla, with Actinobacteria displaying significantly higher abundance compared to the mobile dune soil. PICRUSt2 analyses revealed that the predominant secondary metabolic functions of soil bacteria were carbohydrate metabolism, amino acid metabolism, and the metabolism of cofactors and vitamins. Additionally, the tertiary metabolic pathways exhibited greater activity in relation to enzyme function, nucleotide metabolism, energy metabolism, and antibiotics. The RDA results demonstrated that SOM, AK, and pH collectively accounted for 82.4% of the cumulative contribution, significantly influencing the bacterial community. Moreover, the Mantel test revealed that the metabolic function of soil bacteria primarily relied on five environmental factors, namely SOM, TN, AK, pH, and EC. This study significantly advances our understanding of the structural and functional changes in soil bacterial communities during the reclamation of sandy land through the establishment of artificial H. ammodendron forests.

Funder

National Natural Science Foundation of China Joint Fund for Regional Innovation and Development

Youth Tutor Support Fund of Gansu Agricultural University

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3