Structural Evolution and Hydrogen Sorption Properties of YxNi2−yMny (0.825 ≤ x ≤ 0.95, 0.1 ≤ y ≤ 0.3) Laves Phase Compounds

Author:

Shen Hao123,Paul-Boncour Valerie1,Li Ping2,Jiang Lijun3,Zhang Junxian1ORCID

Affiliation:

1. Univ. Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France

2. Institute for Advanced Materials and Technology, University of Science and Technology, Beijing 100083, China

3. National Engineering Research Center of Nonferrous Metals Materials and Products for New Energy, GRINM Group Co., Ltd., Beijing 100088, China

Abstract

The YxNi2−yMny system was investigated in the region 0.825 ≤ x ≤ 0.95, 0.1 ≤ y ≤ 0.3. The alloys were synthesized by induction melting and corresponding annealing. The substitution of Mn for Ni (y = 0.1) favors the formation of a C15 structure with disordered Y vacancies against the superstructure of Y0.95Ni2. For y = 0.2 and 0.3, Mn can substitute in both Y and Ni sites. Single-phase compounds with a C15 structure can be formed by adjusting both the Y and Mn contents. Their hydrogen absorption–desorption properties were measured by pressure–composition isotherm (PCI) measurements at 150 °C, and the hydrides were characterized at room temperature by X-ray diffraction and TG–DSC experiments. The PCIs show two plateaus corresponding to the formation of crystalline and amorphous hydrides. The heating of the amorphous hydrides leads to an endothermic desorption at first and then a recrystallization into Y(Ni, Mn)3 and YHx phases. At higher temperatures, the Y hydride desorbs, and a recombination into a Y(Ni, Mn)2 Laves phase compound is observed. For y = 0.1, vacancy formation in the Y site and partial Mn substitution in the Ni site enhance the structural stability and suppress the hydrogen-induced amorphization (HIA). However, for a larger Mn content (y ≥ 0.2), Mn substitutes also in the Y sites at the expense of Y vacancies. This yields worse structural stability upon hydrogenation than for y = 0.1, as the mean ratio r(Y, Mn)/r(Ni/Mn) becomes larger than for y = 0.1 r(Y, ☐)/r(Ni/Mn).

Funder

Campus France under Cai Yuanpei

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3