Exploration of ZnO-Doped Nitrogen-Carbon Materials Derived from Polyamide-Imide for Propane Dehydrogenation

Author:

Zhao Huahua1,Ji Tingyu2,Wu Yanping3,Song Huanling1,Wu Jianfeng12,Chou Lingjun1

Affiliation:

1. State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China

2. State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China

3. Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China

Abstract

A series of ZnO-doped nitrogen-carbon materials (xZnO-N-C) with ZnO contents of 5–40% are prepared by a vacuum curing–carbonization strategy using polyamide-imide as the N-C source and zinc nitrate as the metal source for propane dehydrogenation (PDH). 20ZnO-N-C exhibits outstanding initial activity (propane conversion of 35.2% and propene yield of 24.6%) and a relatively low deactivation rate (0.071 h−1) at 600 °C. The results of detailed characterization show that small ZnO nanoparticles (5.5 nm) with high dispersion on the catalyst can be obtained by adjusting the ZnO loading. Moreover, more nitrogen-based species, especially ZnNx species, are formed on 20ZnO-N-C in comparison with 20ZnO-N-C-air prepared via curing carbonization without vacuum, which may contribute to the higher product selectivity and catalytic stability of 20ZnO-N-C. The active sites for the PDH reaction on the catalyst system are proposed to be C=O species and Zn2+ species. Moreover, the carbon deposition and the aggregation of ZnO nanoparticles are the causes of activity loss on this catalyst system.

Funder

Lanzhou Institute of Chemical Physics (LICP) Cooperation Foundation for Young Scholars

State Key Laboratory Program of Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences

National Natural Science Foundation of China

PetroChina Company Limited

Publisher

MDPI AG

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3