An Experimental and Theoretical Study of the Optical Properties of (C2H7N4O)2BiCl5 for an Optoelectronic Application

Author:

Ferjani HelaORCID,Ben Smida Youssef,Onwudiwe Damian C.ORCID,Elamin Nuha Y.,Ezzine Safa,Almotlaq Norah S.

Abstract

This study explores the electronic properties of (C2H7N4O)2BiCl5 using the density functional theory (DFT) method, which was compared with the experimental data. The band structure of the compound indicated that it is a direct semiconductor with a band gap energy of 3.54 eV, which was comparable with the value (3.20 eV) obtained experimentally from the UV–vis spectroscopy. The density of state study showed that the conduction band was formed mainly by Bi 6p, C 2p, and N 2p states, while the valence band was formed mainly by Cl 2p, O 2p, and N 2p states. Hirshfeld surface analysis and enrichment ratio (E) were further used to investigate and quantify the intermolecular interactions within the compound. These studies established that the most important role in the stability of the structure of this crystalline material was provided by hydrogen bonding and π–π stacking interactions. The crystalline morphology of the compound was determined using BFDH simulation, based on the single-crystal structure result. Furthermore, Fourier transform infrared spectroscopy (FTIR) was used to study the vibrational modes of carbamoyl-ganidinium cations. The charge transfer process within the anionic chains of [BiCl5]∝, studied using photoluminescence spectroscopy, resulted in a broad emission band with two positions of maxima centered at 336 and 358 nm. This work offers a good understanding of the optical, structural, as well as the electrical properties of (C2H7N4O)2BiCl5, which are necessary in its applications in areas such as multifunctional magnetic, optoelectronic, and photonic systems.

Publisher

MDPI AG

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3