Reactivity of Coordinated 2-Pyridyl Oximes: Synthesis, Structure, Spectroscopic Characterization and Theoretical Studies of Dichlorodi{(2-Pyridyl)Furoxan}Zinc(II) Obtained from the Reaction between Zinc(II) Nitrate and Pyridine-2-Chloroxime

Author:

Tsantis Sokratis T.ORCID,Bekiari VlasoulaORCID,Tzimopoulos Demetrios I.,Raptopoulou Catherine P.ORCID,Psycharis VassilisORCID,Tsipis Athanasios,Perlepes Spyros P.

Abstract

This work reports our first results in the area of the reactivity of coordinated chloroximes. The 1:2:2:2 Zn(NO3)2∙6H2O/Eu(NO3)3∙6H2O/ClpaoH/Et3N reaction mixture in MeOH, where ClpaoH is pyridine-2-chloroxime, resulted in complex [ZnCl2(L)] (1); L is the di(2-pyridyl)furoxan [3,4-di(2-pyridyl)-1,2,5-oxadiazole-2-oxide] ligand. The same complex can be isolated in the absence of the lanthanoid. The direct reaction of ZnCl2 and pre-synthesized L in MeOH also provides access to 1. In the tetrahedral complex, L behaves as a Npyridyl,N′pyridyl-bidentate ligand, forming an unusual seven-membered chelating ring. The Hirshfeld Surface analysis of the crystal structure reveals a multitude of intermolecular interactions, which generate an interesting 3D architecture. The complex has been characterized by FTIR and Raman spectroscopies. The structure of 1 is not retained in DMSO (dimethylsulfoxide) solution, as proven by NMR (1H, 13C, 15N) spectroscopy and its molar conductivity value. Upon excitation at 375 nm, solid 1 emits blue light with a maximum at 452 nm; the emission is of an intraligand character. The geometric and energetic profiles of possible pathways involved in the reaction of ClpaoH and Zn(NO3)2∙6H2O in MeOH in the presence of Et3N has been investigated by DFT (Density Functional Theory) computational methodologies at the PBE0/Def2-TZVP(Cr)∪6-31G(d,p)(E)/Polarizable Continuum Model (PCM) level of theory. This study reveals an unprecedented cross-coupling reaction between two coordinated 2-pyridyl nitrile oxide ligands.

Publisher

MDPI AG

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3