Abstract
The pyrochlore structure (A2B2O7) has been an object of consistent study by materials scientists largely due to the stability of the cubic lattice with respect to a wide variety of chemical species on the A or B sites. The criterion for stability under ambient conditions is controlled by the ratio of these cations, which is empirically 1.36 < RA/RB < 1.71. However, under applied pressure synthesis conditions, the pyrochlore lattice is stable up to RA/RB ∼ 2.30, opening up possibilities for new compounds. In this review, we will highlight recent work in exploring new rare-earth pyrochlores such as the germanates RE2Ge2O7 and platinates RE2Pt2O7. We highlight recent discoveries made in these pyrochlores such as highly correlated spin ice behavior, spin liquid ground states, and exotic magnetic ordering.
Funder
Natural Sciences and Engineering Research Council of Canada
National Science Foundation
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献