Abstract
Laser irradiation of materials induces changes in their structure and functional properties. In this work, lattice heating and electronic excitation on silver bromide (AgBr), provoked by femtosecond laser irradiation, have been investigated by finite-temperature density functional theory and ab initio molecular dynamics calculations by using the two-temperature model. According to our results, the electronic temperature of 0.25 eV is enough to excite the electrons from the valence to the conduction band, whereas 1.00 eV changes the structural properties of the irradiated AgBr material. Charge density simulations also show that an Ag clustering process and the formation of Br3− complexes take place when the electronic temperature reaches 2.00 eV and 5.00 eV, respectively. The present results can be used to obtain coherent control of the extreme nonequilibrium conditions due to femtosecond laser irradiation for designing new functional materials.
Funder
São Paulo Research Foundation
Generalitat Valenciana
Jaume I University
Ministerio de Ciencia, Innovación y Universidades Spain
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献