An Investigation on the Effect of the Total Efficiency of Water and Air Used Together as a Working Fluid in the Photovoltaic Thermal Systems

Author:

Atmaca Mustafa,Pektemir İmdat Zafer

Abstract

The temperature of a PV (photovoltaic) panel increases when it produces electricity but its electrical efficiency decreases when the temperature increases. In addition, the electrical efficiency of the PV panel is very limited. To increase the PV efficiency, the rest of the solar irradiance must be used, together with the temperature being kept at an optimum value. With this purpose, an experimental study was conducted. Firstly, two specific photovoltaic-thermal (PV/T) systems were designed. The first was the PV/T system which used only a water heat exchanger. The other one was the PV/T system that used a water and air heat exchanger. In the latter PV/T system, air passed through both the top of the PV panel and the bottom of it while water passed through only the bottom of the panel in a separate heat exchanger. In this way, the water and air absorbed the thermal energy of the panel by means of separate heat exchangers, simultaneously. In addition to the two systems mentioned above, an uncooled photovoltaic module was also designed in order to compare the systems. As a result, three different modules were designed. This study was conducted in a natural ambient environment and on days which had different climatic conditions. The thermal, electrical and overall efficiencies of each PV/T module were determined. The results were compared with the uncooled module electrical efficiency. The results showed that when water and air were used together, it was more efficient than single usage in a PV/T system. The thermal gain of the working fluids was also found to be fairly high and so, the gained energy could be used for different purposes. For example, hot air could be used in drying systems and air condition systems. Hot water could be used in hot water supply systems.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference25 articles.

1. Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World – A Review

2. Investigations on the performance of a double pass hybrid-type (PV/T) solar air heater;Sirinivas;Int. J. Energy Environ.,2013

3. Photovoltaic Engineering Handbook;Lasnier,1990

4. Soft computing based approach to evaluate the performance of solar PV module considering wind effect in laboratory condition

5. Photovoltaic modules operating temperature estimation using a simple correlation;Muzathik;Int. J. Energy Eng.,2014

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3