Multi-Model Ensemble Sub-Seasonal Forecasting of Precipitation over the Maritime Continent in Boreal Summer

Author:

Wang Yan,Ren Hong-Li,Zhou Fang,Fu Joshua-Xiouhua,Chen Quan-Liang,Wu JieORCID,Jie Wei-Hua,Zhang Pei-Qun

Abstract

The Maritime Continent (MC) is a critical region with unique geographical conditions and significant monsoon activities that plays a vital role in global climate variation. In this study, the weekly prediction of precipitation over the MC during boreal summer (from May to September) was analyzed using the 12-year reforecasts data from five Sub-seasonal to Seasonal (S2S) models, including the China Meteorological Administration (CMA), the European Centre for Medium-Range Weather Forecasts (ECMWF), Environment and Climate Change Canada (ECCC), the National Centers for Environmental Prediction (NCEP), and the Met Office (UKMO). The result shows that, compared with the individual models, our newly derived median multi-model ensemble (MME) can significantly improve the prediction skill of sub-seasonal precipitation in the MC. Both the Temporal Correlation Coefficient (TCC) skill and the Pattern Correlation Coefficient (PCC) skill reached 0.6 in lead week 1, dropped the following week, did not exceed 0.2 in lead week 3, and then lost their significance. The results show higher prediction skill near the Equator than in the north at 10° N. It is difficult to make effective predictions with the models beyond three weeks. The prediction ability of the median MME improves significantly as the total number of model members increases. The prediction performance of the median MME depends not only on the diversity of models but also on the number of model members. Moreover, the prediction skill is particularly sensitive to the intensity and phase of Boreal Summer Intraseasonal Oscillation 1 (BSISO1) with the highest skills appearing at initial phases 1 and 5.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3