Comparison of GC-μECD and OA-ICOS Methods for High-Precision Measurements of Atmospheric Nitrous Oxide (N2O) at a Korean GAW Station

Author:

Lee HaeyoungORCID,Ko Miyoung,Kim Sumin,Seo Wonick,Park Young-San

Abstract

Nitrous oxide (N2O) is a powerful greenhouse gas and is the largest remaining anthropogenic source of stratospheric ozone-depleting substances as halocarbons return towards preindustrial levels. To verify the N2O emission inventory using inverse analysis, precise and reliable measurements are necessary. In this study, we compared the conventional gas chromatography with the microelectron capture detector method (GC-μECD, Agilent 7890A) with advanced off-axis integrated cavity output spectroscopy (OA-ICOS, Los Gatos, EP-30) for atmospheric N2O measurements at the Jeju Gosan Suwolbong Station (JGS, 126.16° E, 33.30° N, 71.47 m a.s.l) in South Korea. The measurement uncertainties from linearity, repeatability, and reproducibility derived from the two instruments were compared. The values derived from GC-μECD were 2.4 to 8.7 times greater than that of OA-ICOS in all factors at the station. Since these factors affect the measurement quality, the calibration strategy should be well-established to reduce the measurement uncertainty. These uncertainties resulted in biases from the measurement of atmospheric N2O. The parallel inter-comparison experiment was implemented at JGS for 22 months, and the difference in atmospheric N2O was 0.17 ± 0.9 ppb between the two instruments. The significant differences were observed in the nonlinear range of the GC-μECD. Finally, these differences resulted in the over/underestimation of N2O characteristics locally and seasonally. Overall, OA-ICOS has a more robust performance with a lower measurement uncertainty than GC-μECD. Based on this study, we also suggest a calibration strategy for both instruments to achieve precise N2O measurements.

Funder

Korea Meteorological Administration

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3