Abstract
Nitrous oxide (N2O) is a powerful greenhouse gas and is the largest remaining anthropogenic source of stratospheric ozone-depleting substances as halocarbons return towards preindustrial levels. To verify the N2O emission inventory using inverse analysis, precise and reliable measurements are necessary. In this study, we compared the conventional gas chromatography with the microelectron capture detector method (GC-μECD, Agilent 7890A) with advanced off-axis integrated cavity output spectroscopy (OA-ICOS, Los Gatos, EP-30) for atmospheric N2O measurements at the Jeju Gosan Suwolbong Station (JGS, 126.16° E, 33.30° N, 71.47 m a.s.l) in South Korea. The measurement uncertainties from linearity, repeatability, and reproducibility derived from the two instruments were compared. The values derived from GC-μECD were 2.4 to 8.7 times greater than that of OA-ICOS in all factors at the station. Since these factors affect the measurement quality, the calibration strategy should be well-established to reduce the measurement uncertainty. These uncertainties resulted in biases from the measurement of atmospheric N2O. The parallel inter-comparison experiment was implemented at JGS for 22 months, and the difference in atmospheric N2O was 0.17 ± 0.9 ppb between the two instruments. The significant differences were observed in the nonlinear range of the GC-μECD. Finally, these differences resulted in the over/underestimation of N2O characteristics locally and seasonally. Overall, OA-ICOS has a more robust performance with a lower measurement uncertainty than GC-μECD. Based on this study, we also suggest a calibration strategy for both instruments to achieve precise N2O measurements.
Funder
Korea Meteorological Administration
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献