Quantitative Determination Procedures for Regional Extreme Drought Conditions: Application to Historical Drought Events in South Korea

Author:

Lee Chan WookORCID,Park Moo JongORCID,Yoo Do Guen

Abstract

Recently, the signs of extreme droughts, which were thought of as exceptional and unlikely, are being detected worldwide. It is necessary to prepare countermeasures against extreme droughts; however, current definitions of extreme drought are just used as only one or two indicators to represent the status or severity of a drought. More representative drought factors, which can show the status and severity that are relevant to extreme drought, need to be considered depending on the characteristics of the drought and comprehensive evaluation of various indices. Therefore, this study attempted to quantitatively define regional extreme droughts using more acceptable factors. The methodology comprises five factors that are indicative of extreme drought. The five factors are (1) duration (days), (2) number of consecutive years (years), (3) water availability, (4) return period, and (5) regional experience. The results were analyzed by applying the procedure to droughts that took place in 2014–2015 in South Korea. The results showed that the applied historical event did not enter the status of extreme drought, which is proposed in this study; however, the proposed methodology is applicable because it uses acceptable and reasonable factors to judge extreme drought, but it can also take into account the past regional experience of extreme drought.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference32 articles.

1. America’s Climate Choices,2011

2. Models see hard rain, drought if CO2 doubles;Rind;Clim. Alert Newsl.,1993

3. Simulated Changes in the Asian Summer Monsoon at Times of Increased Atmospheric CO2

4. Projection in Future Drought Hazard of South Korea Based on RCP Climate Change Scenario 8.5 Using SPEI

5. Public Participation and Outreach Program of Stakeholders for Drought Preparedness: Invitational Drought Tournament;Nam;Mag. Korean Soc. Agric. Eng.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3