Monoterpene Chemical Speciation with High Time Resolution Using a FastGC/PTR-MS: Results from the COV3ER Experiment on Quercus ilex

Author:

Bsaibes Sandy,Piel FelixORCID,Gros Valérie,Truong François,Lafouge Florence,Ciuraru Raluca,Buysse Pauline,Kammer JulienORCID,Loubet Benjamin,Staudt MichaelORCID

Abstract

Monoterpenes (MTs) represent an important family of biogenic volatile organic compounds (BVOCs) in terms of amount and chemical diversity. This family has been extensively studied using gas chromatography (GC) and proton transfer reaction-mass spectrometry (PTR-MS). Upon recent advances with Fast Gas Chromatography (FastGC), it was also commercialized with proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS) instruments. The combination of both techniques showed promising results in the near real-time separation of isomers, with the need of further improvements. In this study, a FastGC prototype was coupled to a conventional PTR-MS (PTR-QuadMS). Extensive laboratory experiments were performed, in order to test the system’s performance and to optimize its operational parameters for MT separation. The detection limit was determined to be around 0.8–1.7 ppbv, depending on the MT. The system was afterwards deployed during a three-week field campaign in a mixed holm oak (Quercus ilex) forest known for its important MT emissions. MTs were measured in the incoming and the outgoing air of dynamic enclosures installed on the branches of four different trees. Three chemotypes of holm oak trees could be distinguished showing consistently different proportions of the emitted MTs throughout the measurement campaign: pinene-type, myrcene-type and limonene-type. Measurements showed a systematic diel variation in emissions typical of light and temperature-dependent, de novo-synthesized VOCs. The results demonstrated the feasibility of the FastGC/PTR-MS system for continuous measurements from dynamic chambers in the field, whereas further improvements would be necessary to lower the detection limit for ambient air measurements.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3