ATR–FTIR Spectral Analysis and Soluble Components of PM10 And PM2.5 Particulate Matter over the Urban Area of Palermo (Italy) during Normal Days and Saharan Events

Author:

Varrica Daniela,Tamburo Elisa,Vultaggio Marcello,Di Carlo Ida

Abstract

Several epidemiological studies have shown a close relationship between the mass of particulate matter (PM) and its effects on human health. This study reports the identification of inorganic and organic components by attenuated total reflectance-Fourier-transform infrared spectroscopy (ATR-FTIR) analysis in PM10 and PM2.5 filters collected from three air quality monitoring stations in the city of Palermo (Sicily, Italy) during non-Saharan dust events and Saharan events. It also provides information on the abundance and types of water-soluble species. ATR-FTIR analysis identified sulfate, ammonium, nitrate, and carbonate matter characterized by vibrational frequencies at 603, 615, 670, and 1100 cm–1 (SO42–); at 1414 cm–1 (NH4+); at 825 and 1356 cm–1 (NO3–); and at 713, 730, and 877 cm–1 (CO32–) in PM10 and PM2.5 filters. Moreover, aliphatic hydrocarbons were identified in the collected spectra. Stretching frequencies at 2950 cm–1 were assigned to CH3 aliphatic carbon stretching absorptions, while frequencies at 2924 and 2850 cm–1 indicated CH2 bonds. In filters collected during Saharan dust events, the analysis also showed the presence of absorbance peaks typical of clay minerals. The measurement of soluble components confirmed the presence of a geogenic component (marine spray and local rocks) and secondary particles ((NH4)2SO4, NH4NO3) in the PM filters. ATR-FTIR characterization of solid surfaces is a powerful analytical technique for identifying inorganic and organic compounds in samples of particulate matter.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3