Method for Distinguishing Humans and Animals in Vital Signs Monitoring Using IR-UWB Radar

Author:

Wang ,Zhang ,Ma ,Liang ,An ,Xue ,Yu ,Lv ,Wang

Abstract

Radar has been widely applied in many scenarios as a critical remote sensing tool for non-contact vital sign monitoring, particularly for sleep monitoring and heart rate measurement within the home environment. For non-contact monitoring with radar, interference from house pets is an important issue that has been neglected in the past. Many animals have respiratory frequencies similar to those of humans, and they are easily mistaken for human targets in non-contact monitoring, which would trigger a false alarm because of incorrect physiological parameters from the animal. In this study, humans and common pets in families, such as dogs, cats, and rabbits, were detected using an impulse radio ultrawideband (IR-UWB) radar, and the echo signals were analyzed in the time and frequency domains. Subsequently, based on the distinct in-body structure between humans and animals, we propose a parameter, the respiratory and heartbeat energy ratio (RHER), which reflects the contribution rate of breathing and heartbeat in the detected vital signs. Combining this parameter with the energy index, we developed a novel scheme to distinguish between humans and animals. In the developed scheme, after background noise removal and direct-current component suppression, an energy indicator is used to initially identify the target. The signal is then decomposed using a variational mode decomposition algorithm, and the variational intrinsic mode functions that represent human respiration and heartbeat components are obtained and utilized to calculate the RHER parameter. Finally, the RHER index is applied to rapidly distinguish between humans and animals. Our experimental results demonstrate that the proposed approach more effectively distinguishes between humans and animals in terms of monitoring vital signs than the existing methods. Furthermore, its rapidity and need for only minimal calculation resources enable it to meet the needs of real-time monitoring.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3