Abstract
The trend towards the use of the Internet for health information purposes is rising. Utilization of various forms of social media has been a key interest in consumer health informatics (CHI). To reveal the information needs of autism-affected users, this study centers on the research of users’ interactions and information sharing within autism communities on social media. It aims to understand how autism-affected users utilize support groups on Facebook by applying natural language process (NLP) techniques to unstructured health data in social media. An interactive visualization method (pyLDAvis) was employed to evaluate produced models and visualize the inter-topic distance maps. The revealed topics (e.g., parenting, education, behavior traits) identify issues that individuals with autism were concerned about on a daily basis and how they addressed such concerns in the form of group communication. In addition to general social support, disease-specific information, collective coping strategies, and emotional support were provided as well by group members based on similar personal experiences. This study concluded that Latent Dirichlet Allocation (LDA) is feasible and appropriated to derive topics (focus) from messages posted to the autism support groups on Facebook. The revealed topics help healthcare professionals (content providers) understand autism from users’ perspectives and provide better patient communications.
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献