Exploring the Potential of Methanotrophs for Plant Growth Promotion in Rice Agriculture

Author:

Mohite Jyoti A.12,Khatri Kumal12,Pardhi Kajal12,Manvi Shubha S.12,Jadhav Rutuja3,Rathod Shilpa3,Rahalkar Monali C.12ORCID

Affiliation:

1. C2, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, Maharashtra, India

2. Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, Maharashtra, India

3. Biotechnology Department, Rajarshi Shahu Mahavidyalaya Latur, Latur 423511, Maharashtra, India

Abstract

Rice fields are one of the important anthropogenic sources of methane emissions. Methanotrophs dwelling near the rice roots and at the oxic–anoxic interface of paddy fields can oxidize a large fraction of the generated methane and are therefore considered to be important. Nitrogen fixation in rice root-associated methanotrophs is well known. Our aim in this study was to explore the potential of methanotrophs as bio-inoculants for rice and the studies were performed in pot experiments in monsoon. Ten indigenously isolated methanotrophs were used belonging to eight diverse genera of Type Ia, Type Ib, and Type II methanotrophs, including the newly described genera and/or species, Methylocucumis oryzae and Methylolobus aquaticus, as well as Ca. Methylobacter oryzae and Ca. Methylobacter coli. Additionally, two consortia (Methylomonas strains and Methylocystis-Methylosinus strains) were used. Nitrogen fixation pathways or nifH genes were detected in all of the used methanotrophs. Plant growth promotion (PGPR) was seen in terms of increased plant height and grain yield. Nine out of twelve (seven single strains and two consortia) showed positive effects on grain yield (6–38%). The highest increase in grain yield was seen after inoculation with Ca. Methylobacter coli (38%) followed by Methylomonas consortium (35%) and Methylocucumis oryzae (31%). Methylomagnum ishizawai inoculated plants showed the highest plant height. Methylocucumis oryzae inoculated plants showed early flowering, grain formation, and grain maturation (~17–18 days earlier). In all the pot experiments, minimal quantities of nitrogen fertilizer were used with no additional organic fertilizer inputs. The present study demonstrated the possibility of developing methanotrophs as bio-inoculants for rice agriculture, which would promote plant growth under low inputs of nitrogenous fertilizers. Although the effect of methanotrophs on methane mitigation is still under investigation, their application to reduce methane emissions from rice fields could be an added advantage.

Funder

Department of Science and Technology, SERB

POWER fellowship

SERB

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3