Affiliation:
1. Heat and Mass Transfer Laboratory, National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russia
2. A. N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Moscow 119071, Russia
Abstract
The characteristics of water droplet heating and evaporation on structured hydrophobic and hydrophilic surfaces in the range of static contact angles from 73° to 155° were studied experimentally using high-speed video recording. Two fundamentally different technologies for applying coatings on a metal surface were used in comparison with the results on a polished surface. Microscopic studies were conducted to identify the features of the formed coatings. The wetting properties were characterized by means of the static contact angle and the contact angle hysteresis: on polished surface No. 1 (contact angle—73°, hysteresis—11°), on structured surface No. 2 (contact angle—125°, hysteresis—9°), and on structured surface No 3 (contact angle—155°, hysteresis—7°). The experimental dependences of the droplet evaporation rate on the different surfaces under normal conditions (ambient air temperature—293 K, atmospheric pressure, humidity—35%) were obtained. The evaporation regimes of droplets on the surfaces under study were identified. Water droplets evaporated in the pinning mode on surfaces No. 1 and No. 2. When a water droplet evaporated on surface No 3, the droplet was in the constant contact angle regime for ≈90% of its lifetime. Based on the experimental data obtained, a two-dimensional model of conjugate heat and mass transfer was developed, which describes the heating and evaporation of a liquid droplet on structured hydrophobic and hydrophilic surfaces at a wide range of contact angles. Satisfactory agreement was obtained between the numerical simulation results and experimental data. Using the model, the fields of temperature, concentration and other key characteristics were established at different points in time. Recommendations for its application in the development of gas–vapor–droplet applications were formulated.
Funder
Russian Science Foundation
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction