Facilitating Wastewater Purification through Progressive Thawing by Microwave: Responses of Microbial Communities

Author:

Hu Yaxian1,Li Xianwen23,Jiang Simin4,Chen Junying23,Yan Baowen23

Affiliation:

1. College of Soil & Water Conservation and Engineering, Northwest A&F University, Yangling 712100, China

2. College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China

3. Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, China

4. Department of Hydraulic Engineering, Tongji University, Shanghai 200092, China

Abstract

Freeze–thaw has been proved to be a simple, cost-effective, and highly efficient manner to purify wastewater. However, it remains unclear how microbial compositions and functions in meltwater differentiate over progressive thawing and how such differences affect the end product water quality. In this study, wastewater was frozen, progressively thawed via microwave and collected at five intervals: 5 min, 3 min, 3 min, 3 min, and 3 min (termed as T1~T5). It only took 8 min of microwave and 38.8% of total water to remove more than 75% of the dissolved salt and typical pathogenic microbes, and merely 11 min to reach a removal rate greater than 90%. The Shannon index indicated that the α diversity of bacterial and fungal communities significantly reduced from T1 to T5, and the NMDS dissimilarities also illustrated significantly different β diversity between T1 and T2 and T3, T4, and T5. The OTU-based bacterial and fungal co-occurrence networks developed from T1, T5, and CK were significantly different from each other and clustered in distinct modules. Microbial functional profiles further showed that the meltwater preferentially discharged at T1 selectively removed pathogenic and symbiotic fungi and bacterial subsets associated with endocrine diseases, carbohydrate metabolism, and aging. Yet, other microbial subsets tended to be selectively enriched in the end product at T5, such as saprotrophic fungi and bacterial subsets related to drug resistance, infectious diseases, cancers, and xenobiotics’ biodegradation and metabolism. Overall, the fast thawing facilitated by microwave and in turn the efficient removal of brines from ice crystals offered a new approach to overcome the prolonged time cost required by natural thawing. Selective discharge and enrichment of microbial subsets during progressive thawing alarmingly calls for in-depth investigations on the temporal fluxes of microbes when attempting to reuse wastewater in the regions suitable to apply freeze–thaw protocols.

Funder

National Natural Science Foundation of China

West Light Foundation of the Chinese Academy of Sciences

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3