The Value of Distributed High-Resolution UAV-Borne Observations of Water Surface Elevation for River Management and Hydrodynamic Modeling

Author:

Jiang LiguangORCID,Bandini FilippoORCID,Smith Ole,Klint Jensen Inger,Bauer-Gottwein PeterORCID

Abstract

Water level or water surface elevation (WSE) is an important state variable of rivers, lakes, and wetlands. Hydrodynamic models of rivers and streams simulate WSE and can benefit from spatially distributed WSE observations, to increase model reliability and predictive skill. This has been partially addressed by satellite radar altimetry, but satellite altimetry is unable to deliver useful data for small rivers. To overcome such limitations, we deployed a radar altimetry system on an unmanned aerial vehicle (UAV), to map spatially distributed WSE. We showed that UAV altimetry can provide observations of WSE with a very high spatial resolution (ca. 0.5 m) and accuracy (ca. 3 cm), in a time-saving and cost-effective way. Furthermore, we investigated the value of this dataset for the calibration and validation of hydrodynamic models. Specifically, we introduced spatially distributed roughness parameters in a hydrodynamic model and estimated these parameters, using the observed WSE profiles along the stream as input. A case study was conducted in the Åmose stream, Denmark. The results showed that UAV-borne WSE can identify significant variations of the Manning–Strickler coefficients, along this small and highly vegetated stream and over time. Moreover, the model performed extremely well using distributed roughness coefficients, but it could not reproduce WSE satisfactorily using uniform roughness. We concluded that distributed roughness coefficients should be considered, especially for small vegetated rivers, to improve model performance, both locally and globally. Spatially distributed parameterizations of the effective channel roughness could be constrained with UAV-borne WSE. This study demonstrated for the first time that UAV-borne WSE can help to understand the variations of hydraulic roughness, and can support efficient river management and maintenance.

Funder

Innovationsfonden

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3