Soil Erosion under Future Climate Change Scenarios in a Semi-Arid Region

Author:

Elaloui AbdenbiORCID,Khalki El Mahdi ElORCID,Namous MustaphaORCID,Ziadi Khalid,Eloudi Hasna,Faouzi Elhousna,Bou-Imajjane Latifa,Karroum Morad,Tramblay YvesORCID,Boudhar AbdelghaniORCID,Chehbouni AbdelghaniORCID

Abstract

The Mediterranean Region is presumed to be one of the locations where climate change will have the most effect. This impacts natural resources and increases the extent and severity of natural disasters, in general, and soil water erosion in particular. The focus of this research was to assess how climate change might affect the rate of soil erosion in a watershed in the High Atlas of Morocco. For this purpose, high-resolution precipitation and temperature data (12.5 × 12.5 km) were collected from EURO-CORDEX regional climate model (RCM) simulations for the baseline period, 1976–2005, and future periods, 2030–2060 and 2061–2090. In addition, three maps were created for slopes, land cover, and geology, while the observed erosion process in the catchment was determined following field observations. The erosion potential model (EPM) was then used to assess the impacts of precipitation and temperature variations on the soil erosion rate. Until the end of the 21st century, the results showed a decrease in annual precipitation of −32% and −46% under RCP 4.5 for the periods 2030–2060 and 2061–2090, respectively, −28% and −56% under RCP 8.5 for the same periods, respectively, and a large increase in temperature of +2.8 °C and +4.1 °C for the RCP 4.5 scenario, and +3.1 °C and +5.2 °C for the RCP 8.5 scenario for the periods 2030–2060 and 2061–2090, respectively. The aforementioned changes are anticipated to significantly increase the soil erosion potential rate, by +97.11 m3/km2/year by 2060, and +76.06 m3/km2/year by 2090, under the RCP 4.5 scenario. The RCP 8.5 predicts a rise of +124.64 m3/km2/year for the period 2030–2060, but a drop of −123.82 m3/km2/year for the period 2060–2090.

Funder

research program “MorSnow-1”

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3