Estimating the Importance of Hydrologic Conditions on Nutrient Retention and Plant Richness in a Wetlaculture Mesocosm Experiment in a Former Lake Erie Basin Swamp

Author:

Jiang Bingbing,Mitsch William J.ORCID,Lenhart Chris

Abstract

The western basin of Lake Erie, the shallowest of the Laurentian Great Lakes in North America, is now plagued by harmful algal blooms annually due to nutrient discharges primarily from its basin. Water quality was impacted so significantly by toxic cyanobacteria in 2014 that the city of Toledo’s water supply was shut off, affecting hundreds of thousands of residents. A new agricultural land management approach, ‘wetlaculture (=wetland + agriculture)’, has a goal of reducing the need for fertilizer applications while preventing fluxes of nutrients to downstream aquatic ecosystems. A wetlaculture mesocosm experiment was set up on agricultural land near Defiance, Ohio, on the northwestern edge of the former ‘Great Black Swamp’. The mesocosms were randomly assigned to four hydrologic treatments involving two water depths (no standing water and ~10-cm of standing water) and two hydraulic loading rates (10 and 30 cm week−1). Nearby agricultural ditch water was pumped to provide weekly hydraulic loading rates to the mesocosms. During the two-year period, the net mass retention of phosphorus from the water was estimated to have averaged 1.0 g P m−2 in the wetland mesocosms with a higher hydraulic loading rate, while the highest estimated net nitrogen mass retention (average 22 g N m−2) was shown in the wetland mesocosms with 10 cm of standing water and higher hydraulic loading rate. Our finding suggests that hydrologic conditions, especially water level, contribute directly and indirectly to nutrient retention, partially through the quick response of the wetland vegetation community. This study provides valuable information for scaling up to restore significant areas of wetlaculture/wetlands in the former Great Black Swamp, strategically focused on reducing the nutrient loading to western Lake Erie from the Maumee River Basin.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3