Prediction of Novel Humified Gas Turbine Cycle Parameters for Ammonia/Hydrogen Fuels

Author:

Božo Milana Guteša,Valera-Medina AgustinORCID

Abstract

Carbon emissions reduction via the increase of sustainable energy sources in need of storage defines chemicals such as ammonia as one of the promising solutions for reliable power decarbonisation. However, the implementation of ammonia for fuelling purposes in gas turbines for industry and energy production is challenging when compared to current gas turbines fuelled with methane. One major concern is the efficiency of such systems, as this has direct implications in the profitability of these power schemes. Previous works performed around parameters prediction of standard gas turbine cycles showed that the implementation of ammonia/hydrogen as a fuel for gas turbines presents very limited overall efficiencies. Therefore, this paper covers a new approach of parameters prediction consisting of series of analytical and numerical studies used to determine emissions and efficiencies of a redesigned Brayton cycle fuelled with humidified ammonia/hydrogen blends. The combustion analysis was done using CHEMKIN-PRO (ANSYS, Canonsburg, PA, USA), and the results were used for determination of the combustion efficiency. Chemical kinetic results denote the production of very low NOx as a consequence of the recombination of species in a post combustion zone, thus delivering atmospheres with 99.2% vol. clean products. Further corrections to the cycle (i.e., compressor and turbine size) followed, indicating that the use of humidified ammonia-hydrogen blends with a total the amount of fuel added of 10.45 MW can produce total plant efficiencies ~34%. Values of the gas turbine cycle inlet parameters were varied and tested in order to determine sensibilities to these modifications, allowing changes of the analysed outlet parameters below 5%. The best results were used as inputs to determine the final efficiency of an improved Brayton cycle fuelled with humidified ammonia/hydrogen, reaching values up to 43.3% efficiency. It was notorious that humidification at the injector was irrelevant due to the high water production (up to 39.9%) at the combustion chamber, whilst further research is recommended to employ the unburned ammonia (0.6% vol. concentration) for the reduction of NOx left in the system (~10 ppm).

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference46 articles.

1. Hydrogen: Accelerating and Expanding Deployment;Birol,2018

2. Multiple regression analysis in the development of NiFe cells as energy storage solutions for intermittent power sources such as wind or solar

3. Renewable Ammonia Generation, Transport, and Utilization in the Transportation Sector;Bowermaster,2019

4. Science and technology of ammonia combustion

5. Fuel rich ammonia-hydrogen injection for humidified gas turbines

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3