Development of a High-Accuracy Statistical Model to Identify the Key Parameter for Methane Adsorption in Metal-Organic Frameworks

Author:

Sivaramakrishnan KaushikORCID,Mahmoud EyasORCID

Abstract

The geometrical and topological features of metal-organic frameworks (MOFs) play an important role in determining their ability to capture and store methane (CH4). Methane is a greenhouse gas that has been shown to be more dangerous in terms of contributing to global warming than carbon dioxide (CO2), especially in the first 20 years of its release into the atmosphere. Its accelerated emission increases the rate of global temperature increase and needs to be addressed immediately. Adsorption processes have been shown to be effective and efficient in mitigating methane emissions from the atmosphere by providing an enormous surface area for methane storage. Among all the adsorbents, MOFs were shown to be the best adsorbents for methane adsorption due to their higher favorable steric interactions, the presence of binding sites such as open metal sites, and hydrophobic pockets. These features may not necessarily be present in carbonaceous materials and zeolites. Although many studies have suggested that the main reason for the increased storage efficiencies in terms of methane in the MOFs is the high surface area, there was some evidence in certain research works that methane storage performance, as measured by uptakes and deliveries in gravimetric and volumetric units, was higher for certain MOFs with a lower surface area. This prompted us to find out the most significant property of the MOF, whether it be material-based or pore-based, that has the maximum influence on methane uptake and delivery, using a comprehensive statistical approach that has not previously been employed in the methane storage literature. The approach in our study employed various chemometric techniques, including simple and multiple linear regression (SLR and MLR), combined with different types of multicollinearity diagnostics, partial correlations, standardized coefficients, and changes in regression coefficient estimates and their standard errors, applied to both the SLR and MLR models. The main advantages of this statistical approach are that it is quicker, provides a deeper insight into experimental data, and highlights a single, most important, parameter for MOF design and tuning that can predict and maximize the output storage and capture performance. The significance of our approach is that it was modeled purely based on experimental data, which will capture the real system, as opposed to the molecular simulations employed previously in the literature. Our model included data from ~80 MOFs and eight properties related to the material, pore, and thermodynamics (isosteric adsorption energy). Successful attempts to model the methane sorption process have previously been conducted using thermodynamic approaches and by developing adsorption performance indicators, but these are either too complex or time-consuming and their data covers fewer than 10 MOFs and a maximum of three MOF properties. By comparing the statistical metrics between the models, the most important and statistically significant property of the MOF was determined, which will be crucial when designing MOFs for use in storing and delivering methane.

Publisher

MDPI AG

Subject

General Medicine

Reference69 articles.

1. Global Warming Potential (GWP) for Methane: Monte Carlo Analysis of the Uncertainties in Global Tropospheric Model Predictions

2. Methane: A Crucial Opportunity in the Climate Fight https://www.edf.org/climate/methane-crucial-opportunity-climate-fight

3. Canada Has Pledged to Reduce Methane Emissions—Here Are Some Ways to Get There https://www.cbc.ca/news/methane-reduction-canada-1.6228361

4. 3-Nitrooxypropanol Decreased Enteric Methane Production From Growing Beef Cattle in a Commercial Feedlot: Implications for Sustainable Beef Cattle Production

5. Major Studies Reveal 60% More Methane Emissions https://www.edf.org/climate/methane-studies

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3