A Voronoi-Based Semantically Balanced Dummy Generation Framework for Location Privacy

Author:

Tadakaluru Aditya1ORCID,Qin Xiao1ORCID

Affiliation:

1. Department of Computer Science and Software Engineering, Auburn University, Auburn, AL 36849, USA

Abstract

Location-based services (LBS) require users to provide their current location for service delivery and customization. Location privacy protection addresses concerns associated with the potential mishandling of location information submitted to the LBS provider. Location accuracy has a direct impact on the quality of service (QoS), where higher location accuracy results in better QoS. In general, the main goal of any location privacy technique is to achieve maximum QoS while providing minimum or no location information if possible, and using dummy locations is one such location privacy technique. In this paper, we introduced a temporal constraint attack whereby an adversary can exploit the temporal constraints associated with the semantic category of locations to eliminate dummy locations and identify the true location. We demonstrated how an adversary can devise a temporal constraint attack to breach the location privacy of a residential location. We addressed this major limitation of the current dummy approaches with a novel Voronoi-based semantically balanced framework (VSBDG) capable of generating dummy locations that can withstand a temporal constraint attack. Built based on real-world geospatial datasets, the VSBDG framework leverages spatial relationships and operations. Our results show a high physical dispersion cosine similarity of 0.988 between the semantic categories even with larger location set sizes. This indicates a strong and scalable semantic balance for each semantic category within the VSBDG’s output location set. The VSBDG algorithm is capable of producing location sets with high average minimum dispersion distance values of 5861.894 m for residential locations and 6258.046 m for POI locations. The findings demonstrate that the locations within each semantic category are scattered farther apart, entailing optimized location privacy.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3