Affiliation:
1. Global Forensic and Justice Center, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
Abstract
Contamination of trace levels of volatile organic compounds (VOCs) in enclosed spaces is not usually a significant cause for concern; however, it can be relevant in the case of canine scent detection training as a canine’s superior sense of smell makes them highly likely to detect low levels of contamination, contributing to inefficient training. Thus, herein, we address the need for a simple, low-cost, robust, vapochromic sensor to determine the cross-contamination of VOCs within closed containers, such as canine training aid kits. This study focuses on the development of a vapor sensor, which produces a rapid colorimetric change when a target chemical vapor is present. A pH indicator is used as the colorimetric dye and its incorporation into a sol–gel matrix on a paper substrate is confirmed via SEM characterization. The sensor’s stability and performance is tested against exposure to various levels of sunlight and temperature. The design allows the sensor to present a clear and unambiguous visible response to the release of the volatile target within a closed container. It can be readily incorporated into existing training kits and functions as a straightforward reminder of when training aids need to be changed or a new containment system should be considered.
Funder
FIU University Graduate School Dissertation Year Fellowship
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献