A Review on Electrochemical Microsensors for Ascorbic Acid Detection: Clinical, Pharmaceutical, and Food Safety Applications

Author:

Dodevska TotkaORCID,Hadzhiev Dobrin,Shterev Ivan

Abstract

Nowadays, micro-sized sensors have become a hot topic in electroanalysis. Because of their excellent analytical features, microelectrodes are well-accepted tools for clinical, pharmaceutical, food safety, and environmental applications. In this brief review, we highlight the state-of-art electrochemical non-enzymatic microsensors for quantitative detection of ascorbic acid (also known as vitamin C). Ascorbic acid is a naturally occurring water-soluble organic compound with antioxidant properties and its quantitative determination in biological fluids, foods, cosmetics, etc., using electrochemical microsensors is of wide interest. Various electrochemical techniques have been applied to detect ascorbic acid with extremely high sensitivity, selectivity, reproducibility, and reliability, and apply to in vivo measurements. This review paper aims to give readers a clear view of advances in areas of electrode modification, successful strategies for signal amplification, and miniaturization techniques used in the electroanalytical devices for ascorbic acid. In conclusion, current challenges related to the microelectrodes design, and future perspectives are outlined.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference54 articles.

1. Hamza, A. (2017). Vitamin C, IntechOpen.

2. Potential Mechanisms of Action for Vitamin C in Cancer: Reviewing the Evidence;Vissers;Front. Physiol.,2018

3. Vitamin C in Health and Disease: Its Role in the Metabolism of Cells and Redox State in the Brain;Front. Physiol.,2015

4. Ascorbic acid efficiently enhances neuronal synthesis of norepinephrine from dopamine;May;Brain Res. Bull.,2013

5. Lennarz, W.J., and Lane, M.D. (2013). Encyclopedia of Biological Chemistry, Elsevier Inc.. [2nd ed.].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3