SERS Determination of Oxidative Stress Markers in Saliva Using Substrates with Silver Nanoparticle-Decorated Silicon Nanowires

Author:

Kanioura Anastasia1,Geka Georgia1,Kochylas Ioannis2ORCID,Likodimos Vlassis2ORCID,Gardelis Spiros2ORCID,Dimitriou Anastasios3ORCID,Papanikolaou Nikolaos3ORCID,Kakabakos Sotirios1ORCID,Petrou Panagiota1

Affiliation:

1. Immunoassays/Immunosensors Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece

2. Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece

3. Institute of Nanoscience & Nanotechnology, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece

Abstract

Glutathione and malondialdehyde are two compounds commonly used to evaluate the oxidative stress status of an organism. Although their determination is usually performed in blood serum, saliva is gaining ground as the biological fluid of choice for oxidative stress determination at the point of need. For this purpose, surface-enhanced Raman spectroscopy (SERS), which is a highly sensitive method for the detection of biomolecules, could offer additional advantages regarding the analysis of biological fluids at the point of need. In this work, silicon nanowires decorated with silver nanoparticles made by metal-assisted chemical etching were evaluated as substrates for the SERS determination of glutathione and malondialdehyde in water and saliva. In particular, glutathione was determined by monitoring the reduction in the Raman signal obtained from substrates modified with crystal violet upon incubation with aqueous glutathione solutions. On the other hand, malondialdehyde was detected after a reaction with thiobarbituric acid to produce a derivative with a strong Raman signal. The detection limits achieved after optimization of several assay parameters were 50 and 3.2 nM for aqueous solutions of glutathione and malondialdehyde, respectively. In artificial saliva, however, the detection limits were 2.0 and 0.32 μM for glutathione and malondialdehyde, respectively, which are, nonetheless, adequate for the determination of these two markers in saliva.

Funder

European Regional Development Fund of the European Union and Greek national funds

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3