Theory and Data-Driven Competence Evaluation with Multimodal Machine Learning—A Chinese Competence Evaluation Multimodal Dataset

Author:

Xian Teli1,Du Peiyuan1,Liao Chengcheng1ORCID

Affiliation:

1. Business School, Sichuan University, Chengdu 610065, China

Abstract

In social interactions, people who are perceived as competent win more chances, tend to have more opportunities, and perform better in both personal and professional aspects of their lives. However, the process of evaluating competence is still poorly understood. To fill this gap, we developed a two-step empirical study to propose a competence evaluation framework and a predictor of individual competence based on multimodal data using machine learning and computer vision methods. In study 1, from a knowledge-driven perspective, we first proposed a competence evaluation framework composed of 4 inner traits (skill, expression efficiency, intelligence, and capability) and 6 outer traits (age, eye gaze variation, glasses, length-to-width ratio, vocal energy, and vocal variation). Then, eXtreme Gradient Boosting (XGBoost) and Shapley Additive exPlanations (SHAP) were utilized to predict and interpret individual competence, respectively. The results indicate that 8 (4 inner and 4 outer) traits (in descending order: vocal energy, age, length-to-width ratio, glasses, expression efficiency, capability, intelligence, and skill) contribute positively to competence evaluation, while 2 outer traits (vocal variation and eye gaze variation) contribute negatively. In study 2, from a data-driven perspective, we accurately predicted competence with a cutting-edge multimodal machine learning algorithm, low-rank multimodal fusion (LMF), which exploits the intra- and intermodal interactions among all the visual, vocal, and textual features of an individual’s competence behavior. The results indicate that vocal and visual features contribute most to competence evaluation. In addition, we provided a Chinese Competence Evaluation Multimodal Dataset (CH-CMD) for individual competence analysis. This paper provides a systemic competence framework with empirical consolidation and an effective multimodal machine learning method for competence evaluation, offering novel insights into the study of individual affective traits, quality, personality, etc.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference104 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3